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Cell biology

DNA: 3.2 x 10° nucleotides

Human body: 100 x 1012 cells

t Genome:
23 chromosomes

Central dogma

DNA - genomics
(25.000 genes)

TRANSCRIPTION
alternative splicing

\%

mRNA - transcriptomics

TRANSLATION

post-translational
modifications

V

Protein — proteomics
(106¢ proteins)
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(epi)Genetics

GENOME TRANSCRIPTOME
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Cancer Cancer

» Genetic and epigenetic disease
» Incidence in Europe: 3.2 million
» Mortality in Europe: 1.7 million
» Responsible for 10% of medical care cost

» Genetic variations § g ;
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Microarray Microarray
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Array CGH

Tumor
genomic DNA

Reference
genomic DNA

Loss of DNA
copies in tumor

Gain of DNA
copies in tumor

Log; 3/2 ~ 0.5
Log, 2/2 =0
Log, 1/2 ~ -0.8
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Clinical decision support

» Tsunami of data (multiple —ome levels)
» 4P medicine
= Preventive
= Predictive
= Personalized
= Participatory
> Decreasing cost-effectiveness of the health care system

Clinical decision support

» Example: gene signature

Score

Blood sample

Chemo is
administered

!

1 No chemo-

=> Clinical decision support systems therapy

» To automate decisions based on domain knowledge and
training data

» To improve speed, accuracy and reliability of diagnostic
and prognostic tools

» To better select patients for therapy

ﬁ improved
survival

Microarray chip

Survival (%)

Follow-u3 {months)
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Kernel methods Least Squares SVM

N
mianJF(w,e):lew+ ylZg‘e,f
- 2 253
subject to y, [vvr¢(xk)+b]:1—ek, k=1...N

N/2N, ify, =+1
with & =

T|N/2N, ify, =-1

Kernel function k(xk ’xl) :<(I>(xk )’CI)(X’)>
k(x,,x)=xx,

k(e x) = (xx, + T)d

k(%) =exp(~[lx, [, /o)
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. . Predicted
» Objectives True outcome outcome
= Exclusion of redundant & non-discriminatory features Poor _— TP = True Positive
= Avoid overfitting prognosis T — FP = False Positive
= Improve model performance g T \ —— FN FN = False Negative
= Faster, more cost-effective models g TN = True Negative
©
» Additional layer of complexity a | / — FP
Good . N §
= Differential Expression via Distance Synthesis (DEDS) prognosis
genes Rank, Rank,
] DEG -
[ ] Sensitivity = ——
u TP+ FN
P = = specificity =V &
™ pecificity = ——
TN + FP
[ |
[ ]
Rank,
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Yang et al. (2005)

Model selection Model selection

Receiver Operating Characteristic Curve Receiver Operating Characteristic Curve

sensitivity
sonsitivity

AUC

1-gpecificity L-specificity

AUC = Area under the ROC curve

Department of Electrical Engineerin Department of Electrical Engineering ~




Clinicopathological data

1
Chapter 5
Array CGH
Proteome Modeling

Transcriptome
7 B Genome

Chapter 4
Improved Clinical
Modeling

Chapter 3
Kernel-Based

Data Integration %
o

Chapter 6
-—— Graph Encoded —
Interactome Data

External databases

~
preSite

CLINICAL DECISION SUPPORT SYSTEM ‘
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Data fusion
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Pavlidis et al. (2001)

Clinicopathological data
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Kernel-Based
Data Integration

CLINICAL DECISION SUPPORT SYSTEM
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Methodology
Normalized linear kernel function
];('xk"xl) =k('xk’xl)/ k(xk’xk)k(xl’xl)

with k(x,,x) = x] x
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Data Rectal cancer

Study Investigate the combination of cetuximab,
capecitabine and radiotherapy in preoperative treatment
of rectal cancer patients (Machiels et al. Ann Oncol 2007)

2weeks § weeks 8-8 weeks

JSsturimall_Combingdion therepy | i
T T T

T
Tisurgeryh

’g E — Microarray data
g CRG
'g % % — Proteomics data
” profeins

' ! }

At 3 timepoints during therapy
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@ Both microarray and
o— 1 G proteomics necessary due to
£ o complementarity

G o,

L cal Limited number of genes and
El "y proteins, of which many
» - related to (rectal) cancer
o S

Data Rectal cancer

genes proteins outcomes

n samples

microarray data set  proteomics dataset  wheeler pN-stage crm

Wheeler = tumor regression grade

» Responder (26): good or total regression
» Nonresponder (10): no, minimal or moderate regression
pN-stage = number of lymph nodes found at surgery
> Responder (22): no lymph nodes
Nonresponder (14): 2 1 lymph node

>
CRM (circumferential resection margin) = dis

tance between
tumor and mesorectal fascia 2

> Responder (27): > 2mm
> Nonresponder (9): < 2mm
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Data Prostate cancer

genes CNVs outcomes

n samples

microarray dataset  genomic data set grade metastasis stage recurrence

Publicly available data set on 55 primary prostate tumors
(Lapointe et al. PNAS 2004; Cancer Res 2007)

Data sources

> Microarray data (26.260 genes)

> DNA copy number variation data (22.279 CNVs)
Outcomes

> Grade (36/19)

> Stage (25/25)

> Metastasis (38/12)

» Recurrence (22/7)
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Toolbox

HIDIDIT

s High-Dimensional Data Integration Toolbox
Download Within the field of
o anaying e data st tained fom paint, saehcortaiing fomation o a ifere

aspect of biological regulaton.
contact: Fora decade, microarray tachnology was used n research with as aim to improve decision
lulewenss  SUDDOTL. Within the bioinformatics 0roup at ESAT, the web service MECEETE, 3 HicroATTay
Toolon s Host server,
o ssar) Jassifcati ding the thods by

using randomizations of the benchmarking data set.

Saigor has become 3
necessity. We therefore provide HI-DID-IT, a HIgh-Dimensional Data Integration Toolbox
for Matiab through which mutiple high-gimensional data sources can be intearated. The Least

Sauarss Supp is used for the modsling

the
b used for modsl training, modsl testing as well 25 for comparison with other methodological
approaches in benchmarking studies.

The wabsite is made svsiibl for non-commarcal rassarch purposss orly under the GNU
‘Seneral Public License. However, notwihstanding any provison of the GNU GPL, the toolbox

FILDIC-1T | © Copyright 2010 - Al ghts reserved

http://homes.esat.kuleuven.be/~bioiuser/HIDIDIT/index.php
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Conclusions

> Integration of complementary data in the patient domain
using kernel methods

» Improved decision support in cancer with limited number of
variables

» Many features related to rectal cancer (e.g. EGF-R, Cox-2,
TGFg)MMP 2, TNFa) or prostate cancer (e.g. CXCL14 ERG
VAV.

» Multi-modal data should be gathered to ultimately obtain
cost-efficient models

> Publlcatlons
Daemen et al, (2007) Integration of clinical and microarray data with kernel methods.
EMBC, Lyon, France, 5411-5415 (6 citations).
= Daemen et al. (2008) Integrating microarray and proteomics data to predict the
res}:onse on cetuximab in patients with rectal cancer. PSB, Kohala Coast, Hawaii, 166-
(7 citations).
Daemen et al. (2009) A kernel-based |ntegrat|on of genome-wide data for clinical
decision support. Genome Med 1:39 (5 citations).
Debucquoy et al. (2009) Molecular response to cetuximab and effica 9reu§eranve
cetttéxlma)b based chemoradiation in rectal cancer. J Clin Oncol 27:27! 1 5
citations;
Daemen et al. HI-DID-IT, a High-DimenSiunaI Data Integration Toolbox for clinical
applications. Submitted to BMC Bioinf.
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Clinicopathological data E

Chapter 4
Improved Clinical
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Clinical kernel function Clinical kernel function

Linear kernel function: k(i j)=x"x' with xe R” Continuous & Ordinal variables:

> variable type not taken into account

p

» inner product depends on the variable range ki j)= r

> different influence of variables on patient similarity Nominal variables:

» dummy variables required for each nominal variable o 1 ifz =z,
k’(l")={0 ifz, %72,

Clinical additive kernel function:

Final kernel for clinical data:
> specifically developed for clinical data
» type and range of each variable taken into account
> only zero for most dissimilar patients

R I T
kG, jy=—>"k.(i, )
P
Polynomial kernel:

(x’Tx’+r)d - (iik;(i,jﬂrj
P=

d
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Gynecological data

. Endometrial disease: abnormal vs. normal
> 339 patients: 163/176
» 22 variables: 5C, 40, 13N

. First trimester pregnancy: miscarriage vs. normal

Methodology

—

2 samples

TRAINING $57

275 samples

—
=

» 2356 pregnancies: 898/1458
> 18 variables: 1C, 80, 9N
. Pregnancy of unknown location: EP vs. failing PUL & IUP
» 856 PULs: 66/790
> 12 variables: 5C, 7N

10 tune s

1I

=

IV. Adnexal mass: malignant vs. benign
» 1573 patients: 409/1164
» 15 variables: 3C, 20, 10N

Comn—CHHEHHHE—H 8
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Breast cancer data
= V. Recurrence: yes vs. no
. & > 110 patients: 25/85
= 7: » 12 variables: 2C, 30, 7N
Bt =t VI. Treatment response: residual vs. complete
i %‘ > 129 patients: 96/33
H s » 8 variables: 1C, 30, 4N
T TR VII. Relapse: yes vs. no
= (z s = > 177 patients: 65/112
BT T = T > 5 variables: 2C, 3N
Tie) - T b;!
T o7 -
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Conclusions

Development of a clinical additive kernel function (both
linear and non-linear)

Type and range of each variable taken into account
Each variable with same influence on patient similarity
More accurate representation of patient similarity

YVVYVY V¥V

v

Improved results for clinical data and their combination
with microarray data
> Similar results with SVM

» Publications
= Daemen et al. (2009) Development of a kernel function for clinical data.
EMBC, Minneapolis, USA, 5913-5917 (1 citation).
= Daemen et al. (2010) Improved modeling of clinical data with kernel
methods. Revised manuscript submitted to Artif Intell Med.
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Chapter 5
Array CGH
= Modeling

Genome

CLINICAL DECISION SUPPORT SYSTEM
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Hidden Markov Model

» Segmentation

= Partition copy number profile into genomic regions of
constant copy number

» Identification

= Determine regions of copy number gain and loss
» Combination of both tasks

= Hidden Markov Model

Log2Rat
.20 -05 10 20
4
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Hidden Markov Model

» Hidden Markov Model
= Hidden states
= Observations
= Initial probability of being in a state
= Transition probabilities from 1 state to all the others
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Hidden Markov Model

» Hidden Markov Model
= Hidden states = underlying copy number (loss, neutral,
gain)
= Observations = observed log; ratio

= Recurrent HMM of Shah et al. (2007)
= Modeling of a group of samples
= Statistical strength
= Influence of noise
= Individual clones

Chromosome ¢

_Sample s|
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Data array CGH

Data set I: patients treated for ovarian cancer at University
Hospital Leuven, Belgium (Leunen et al., Hum Mut 2009)

» 8 sporadic samples

» 5 BRCA1 mutated samples

> 3.593 unique clones (CGH-SANGER 3K 7, Flanders Institute for
Biotechnology, Leuven, Belgium)

BRCA1 chromosome 1 BRCA1 chromosome 2
1 15 1 15

ﬁ;
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:I:I]-]IIJDCEEIJ]I[I:IM
TG, U LD T O L, T L
oot SRR

e 5

Sporadic chromosome 1
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Data array CGH

Data set I: patients treated for ovarian cancer at University
Hospital Leuven, Belgium (Leunen et al., Hum Mut 2009)
» 8 sporadic samples
» 5 BRCA1 mutated samples
> 3.593 unique clones (CGH-SANGER 3K 7, Flanders Institute for
Biotechnology, Leuven, Belgium)
Data set II: oral squamous cell carcinoma Snijders et al.
(2005)
> 59 samples wildtype for TP53
» 16 samples with a mutation for TP53
» 2.056 unique clones (HumArray2.0)
Data set III: non-small cell lung carcinoma Garnis et al. (2006)
» 13 adenocarcinoma
» 9 squamous cell carcinoma
» 29.781 unique clones (submegabase tiling array)
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Results

Data set Nb regions | Accuracy | Sensitivity | Specificity | AUC
own data” 1 92.3 (12/13) 100 (5/5) 87.5(7/8) | 0.875
Snijders* 10 88 (66/75) 93.2(55/59) 68.8 (11/16) | 0.840
Garnis® 8 95.5(21/22) | 92.3 (12/13) 100 (9/9) | 0.983

* 10-fold CV performance; ~ LOO performance

E E Region | Nb Nb LOO

= E g E @E =l genes | iterations
= 2 1 0 8
ﬁ é 2 5 11
2 3 4 5 3 7 E] 9 3 0 9
BRCA1 gain 4 L "
BRCAL1 loss 5 24 10
_ Sporadic loss 6 32 5
b2 = 7 66 7

E =

IR
SERPISUEEE C 4
10 86 4
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Methodology
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Conclusions

» Many cancer studies: array CGH data for exploratory
analysis

» Novel methodological approach: recurrent HMM and
feature selection within classification setting

> Identification of class-specific aberrations

» Stability of the regions > robust

» Functional annotation analysis - oncogenes or tumor
sup,)_pressor genes (BAF57, HOXAS5, LAMA3, CUTL1,
FGF-10)

> Publlcatlons
Daemen et al. (t2008) Classification of sporadic and BRCA1 ovarian cancer based on a
enome-wide study of copy number variations. KES (Lecture Notes Comp Science),
agreb, Croatia, 165- 172
= Daemen et al. (2009) A genome-wide computational study of copy number variations:
an example on ovarian cancer. Chapter 9 of Investl%atlng human cancer with
p (Vellido A, Lisboa P eds), 107-118.
= Daemen et al. (2009& Super\/lsed classification of array CGH data with HMM-based
feature selection. PSB, Kohala Coast, Hawaii, 468-479.
= Leunen et al. (2009) Recurrent COE{V number alterations in BRCA1-mutated ovarian
tumors alter biological pathways. Hum Mut 30:1693-1702.
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g Spectral graph theory

Prior biological knowledge - list of gene pairs
- undirected graph G=(V,E)
- V = {genes}
- E = {gene regulation, protein interactions, etc.}

i - Adjacency matrix Degree matrix
’ ” 123 45
- - 01 10 0|1 20000
AAAAAAAA . h External databases 1010 0f 2 02000
_________________ J@ A=1 1 0 1 0] 3 D=0 0 3 00
Chapter 6 0010 1| 4 00020
0001 0]s 000 01

Interactome Data d; = #neighbor nodes

-4—— Graph Encoded — @
~

CLINICAL DECISION SUPPORT SYSTEM ‘
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Spectral graph theory

Laplacian matrix

Secondary data sources

= knowledge in databases on different aspects

2 -1 -1 0 0 of biological systems
-1 2 -1 0 0
L=D-A=-1 -1 3 -1 0 Metabolic pathways
0 0 -1 2 -1
0 0 0 -1 1 Protein-protein interactions

+ - - i . . . .
L™ = G = Moore-Penrose pseudoinverse of L (Fouss et al, 2007) Domain-domain interactions

= f (similarity between pairs of genes in the network)
055 021 0.08 -032 -0.52
021 054 008 -032 -0.52
L'=| 008 008 028 -0.12 -032
-032 032 -0.12 048 028
-052 -0.52 -032 028 1.08

Protein domains and families

Transcription factors

=» For each gene, its neighborhood in the human interactome is
taken into account
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Secondary data sources

= knowledge in databases on different aspects
of biological systems

Metabolic pathways
> edge = genes/proteins belonging to same pathway

@ oHummere  eaun 20

ESANZ

il
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Secondary data sources

Secondary data sources

= knowledge in databases on different aspects
of biological systems

Protein-protein interactions
> edge = interacting proteins

P i0oGRID STRING

g
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= knowledge in databases on different aspects
of biological systems

Domain-domain interactions
» edge = proteins interacting via a domain-domain interaction

pOMEINE UniDomint

Databare of Protein Domain lateractions

i

il
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Secondary data sources

= knowledge in databases on different aspects
of biological systems

Protein domains and families
> edge = proteins with domains or families in common

prcSite Pfam

-

g
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Secondary data sources

= knowledge in databases on different aspects
of biological systems

Transcription factors
> edge = genes targeted by the same miRNA

i %} . TargetScan
miRBuse W‘/LKN aFmdlcﬁngoi microRNA farges

Department of Electrical Engineering

microRNA.org

Microarray data

sets

Data set Cancer type Outcome #samples (-/+)

T Berchuck ovarian survival 53 (29/24)
Hess breast pathologic response 133 (99/34)
Ivshina breast local, regional or distant recurrence 249 (160/89)
Pittman 1 breast relapse 158 (95/63)
Pittman 3 breast distant metastasis 158 (108/50)
Rosenwald DLBCL survival 220 (118/102)
Singh prostate tumor status 102 (50/52)
Sotiriou 1 breast relapse 187 (139/40)
Sotiriou 2 breast distant metastasis 179 (139/40)
Wang breast metastasis within 5 yrs 276 (183/93)

v Bild ovarian survival 133 (88/45)
Chin breast distant recurrence 129 (102/27)

Huang 1 breast disease recurrence 52 (34/18)

Huang 2 breast relapse 80 (53/27)
Miller breast death from breast cancer 236 (181/55)
Pittman 2 breast loco-regional recurrence 158 (132/26)

DLBCL = diffuse large-B-cell lymphoma
Affymetrix chips except for Rosenwald (lymphochip)

Department of Electrical Engineering

Methodology
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= Each G-matrix exhaustively relates the gene expression
profiles of multiple samples, weighted by its entries g,, to obtain
a more accurate patient similarity matrix
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Training results Validation results

mean AUC of

baseline model

best individual secondary data source (-logp®: 0.7 - 24.82)
best fixed combination rule (-logp?: 0.1 - 16.7)

best trained combination rule (-logp®: 0.03 - 19.89)

best advanced model (-logp?: 0 - 14.47)

mean AUC of

baseline model

best individual secondary data source (-logp?: 1.03 - 16.35)
mean rule (-logp?: 0.71 - 8.34)

AUC weighting (-logp?: 0.73 - 8.21)

naive Bayes (-logp?: 0.02 - 5.47)

0o © Comparison of 200 AUC 08 ' © Comparison of 200 AUC
values between baseline model values between baseline model

09 and all other models (one- and all other models (one-
. sided paired-sampled t-test) - sided paired-sampled t-test)
£ nss g
S o
Eoms " 3 "
H Overall (Wilcoxon) 5 Overall (Wilcoxon)
o o
2 07 individual: 0.002 2 individual: 0.0004
2 e fixed: 0.0039 3 mean: 0.000.
z trained: 0.0098 z AUC weighting: 0.001
g 08 advanced: 0.557 H

056

05

il T T3 T4 TE T hrd ™ T8 TIO
data set

W1 W2 3 W4 WE VB

data set
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Conclusions

» Improved decision making based on microarray data
by incorporating the human interactome

» Interactome data encoded in a graph-based way
» Any type of gene-related info can be considered

» KEGG, OPHID and microRNA. org outperform other
sources with regard to LS-SV

» Mean rule for the prediction of the 3 corresponding
models suffices

» Applicable to any kernel method, kernelizable method
and in a general regression framework

» 2-layer approach essential

» Publications

= Daemen et al. Improved microarray-based decision support with rap
encode(;l gene-related data sources. PLoS ONE 5(4): e10225 (2010) (1
citation
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