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Cell biology

Human body: 100 x 1012 cells DNA: 3.2 x 109 nucleotides

Genome:

23 chromosomes

Central dogma

DNA – genomics 
(25.000 genes)

mRNA - transcriptomics

TRANSCRIPTION

gene

Protein – proteomics 
(106 proteins)

TRANSLATION

alternative splicing

post-translational 
modifications

(epi)Genetics

GENOME TRANSCRIPTOME

METABOLOME PROTEOME
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Cancer

� Genetic and epigenetic disease

� Incidence in Europe: 3.2 million

� Mortality in Europe: 1.7 million

� Responsible for 10% of medical care cost

� Genetic variations

Cancer

Microarray

Quackenbush et al. (2006)

Microarray

Coe et al. (2004)
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Microarray

Quackenbush et al. (2006)
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Array CGH

Tumor 
genomic DNA

Reference 
genomic DNA

Loss of DNA 
copies in tumor

Gain of DNA 
copies in tumor

Log2 3/2 ~ 0.5 � duplication

Log2 2/2 = 0 � neutral

Log2 1/2 ~ -0.8 � deletion

Array CGH

Select alterations in gene expression that 
favor tumor development
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Clinical decision support
� Tsunami of data (multiple –ome levels)

� 4P medicine
� Preventive

� Predictive

� Personalized

� Participatory

� Decreasing cost-effectiveness of the health care system

� Clinical decision support systems

� To automate decisions based on domain knowledge and 
training data

� To improve speed, accuracy and reliability of diagnostic 
and prognostic tools

� To better select patients for therapy

Clinical decision support

� Example: gene signature

Blood sample

Microarray chip

Score

Chemo is 
administered

No chemo-
therapy

improved 
survival

Kernel methods
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Feature selection

� Objectives

� Exclusion of redundant & non-discriminatory features

� Avoid overfitting

� Improve model performance

� Faster, more cost-effective models

� Additional layer of complexity

DEG

� Differential Expression via Distance Synthesis (DEDS)

Yang et al. (2005)

Model selection

TP

TP FN
=

+

True outcome
Predicted 
outcome

Poor 
prognosis

Good 
prognosis
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TP

TN

FN

FP

TP = True Positive

FP = False Positive

FN = False Negative

TN = True Negative

TN

TN FP
=

+

Sensitivity

Specificity

Model selection

Receiver Operating Characteristic Curve

Model selection

AUC = Area under the ROC curve

Receiver Operating Characteristic Curve
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Data fusion

Pavlidis et al. (2001)
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Data Rectal cancer

Study Investigate the combination of cetuximab, 

capecitabine and radiotherapy in preoperative treatment 

of rectal cancer patients (Machiels et al. Ann Oncol 2007)

Microarray data

Proteomics data

At 3 timepoints during therapy

36 rectal cancer 
patients

Data Rectal cancer

Wheeler = tumor regression grade

� Responder (26): good or total regression

� Nonresponder (10): no, minimal or moderate regression

pN-stage = number of lymph nodes found at surgery

� Responder (22): no lymph nodes

� Nonresponder (14): ≥ 1 lymph node

CRM (circumferential resection margin) = distance between 
tumor and mesorectal fascia

� Responder (27): > 2mm

� Nonresponder (9): ≤ 2mm

Results

Both microarray and 
proteomics necessary due to 
complementarity

Limited number of genes and 
proteins, of which many 

related to (rectal) cancer

WHEELER

CRM

pN-STAGE

Data Prostate cancer

Publicly available data set on 55 primary prostate tumors 
(Lapointe et al. PNAS 2004; Cancer Res 2007)

Data sources

� Microarray data (26.260 genes)

� DNA copy number variation data (22.279 CNVs)

Outcomes

� Grade (36/19)

� Stage (25/25)
� Metastasis (38/12)

� Recurrence (22/7)
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Results
GRADE STAGE

METASTASIS RECURRENCE

Toolbox

http://homes.esat.kuleuven.be/~bioiuser/HIDIDIT/index.php

Conclusions

� Integration of complementary data in the patient domain 
using kernel methods

� Improved decision support in cancer with limited number of 
variables

� Many features related to rectal cancer (e.g. EGF-R, Cox-2, 
TGFα, MMP-2, TNFα) or prostate cancer (e.g. CXCL14, ERG, 
VAV3)

� Multi-modal data should be gathered to ultimately obtain 
cost-efficient models

� Publications
� Daemen et al. (2007) Integration of clinical and microarray data with kernel methods. 

EMBC, Lyon, France, 5411-5415 (6 citations).
� Daemen et al. (2008) Integrating microarray and proteomics data to predict the 

response on cetuximab in patients with rectal cancer. PSB, Kohala Coast, Hawaii, 166-
177 (7 citations).

� Daemen et al. (2009) A kernel-based integration of genome-wide data for clinical 
decision support. Genome Med 1:39 (5 citations).

� Debucquoy et al. (2009) Molecular response to cetuximab and efficacy of preoperative 
cetuximab-based chemoradiation in rectal cancer. J Clin Oncol 27:2751-57 (12 
citations). 

� Daemen et al. HI-DID-IT, a High-Dimensional Data Integration Toolbox for clinical 
applications. Submitted to BMC Bioinf.
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Clinical kernel function  

Linear kernel function:

� variable type not taken into account

� inner product depends on the variable range

� different influence of variables on patient similarity

� dummy variables required for each nominal variable

Clinical additive kernel function:

� specifically developed for clinical data

� type and range of each variable taken into account

� only zero for most dissimilar patients

( , )  with  
Ti j pk i j x x x= ∈R Continuous & Ordinal variables:

Nominal variables:

Final kernel for clinical data:

Polynomial kernel:

Clinical kernel function
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Gynecological data 

I. Endometrial disease: abnormal vs. normal

� 339 patients: 163/176

� 22 variables: 5C, 4O, 13N

II. First trimester pregnancy: miscarriage vs. normal

� 2356 pregnancies: 898/1458

� 18 variables: 1C, 8O, 9N

III. Pregnancy of unknown location: EP vs. failing PUL & IUP

� 856 PULs: 66/790

� 12 variables: 5C, 7N

IV. Adnexal mass: malignant vs. benign

� 1573 patients: 409/1164

� 15 variables: 3C, 2O, 10N

Methodology

γ

τ



10

Results

I II

III IV

Breast cancer data

V. Recurrence: yes vs. no

� 110 patients: 25/85

� 12 variables: 2C, 3O, 7N

VI. Treatment response: residual vs. complete

� 129 patients: 96/33

� 8 variables: 1C, 3O, 4N

VII. Relapse: yes vs. no

� 177 patients: 65/112

� 5 variables: 2C, 3N

Methodology

γ

µ

Three settings: 
� 1 CL + 0 MA
� 0.5 CL + 0.5 MA
� µ CL + (1-µ) MA

Limited sample size: τ=1

Results
V VI

VII
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Conclusions
� Development of a clinical additive kernel function (both 

linear and non-linear)
� Type and range of each variable taken into account
� Each variable with same influence on patient similarity
� More accurate representation of patient similarity

� Improved results for clinical data and their combination 
with microarray data

� Similar results with SVM

� Publications
� Daemen et al. (2009) Development of a kernel function for clinical data. 

EMBC, Minneapolis, USA, 5913-5917 (1 citation). 
� Daemen et al. (2010) Improved modeling of clinical data with kernel 

methods. Revised manuscript submitted to Artif Intell Med. 

Hidden Markov Model
� Segmentation

� Partition copy number profile into genomic regions of 
constant copy number

� Identification

� Determine regions of copy number gain and loss

� Combination of both tasks

� Hidden Markov Model

Hidden Markov Model
� Hidden Markov Model

� Hidden states

� Observations

� Initial probability of being in a state

� Transition probabilities from 1 state to all the others
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Hidden Markov Model
� Hidden Markov Model

� Hidden states = underlying copy number (loss, neutral, 
gain)

� Observations = observed log2 ratio

� Recurrent HMM of Shah et al. (2007)

� Modeling of a group of samples

� Statistical strength

� Influence of noise

� Individual clones

Data array CGH
Data set I: patients treated for ovarian cancer at University 

Hospital Leuven, Belgium (Leunen et al., Hum Mut 2009)

� 8 sporadic samples

� 5 BRCA1 mutated samples

� 3.593 unique clones (CGH-SANGER 3K 7, Flanders Institute for 

Biotechnology, Leuven, Belgium)



13

Data array CGH
Data set I: patients treated for ovarian cancer at University 

Hospital Leuven, Belgium (Leunen et al., Hum Mut 2009)

� 8 sporadic samples

� 5 BRCA1 mutated samples

� 3.593 unique clones (CGH-SANGER 3K 7, Flanders Institute for 

Biotechnology, Leuven, Belgium)

Data set II: oral squamous cell carcinoma Snijders et al.
(2005)

� 59 samples wildtype for TP53

� 16 samples with a mutation for TP53

� 2.056 unique clones (HumArray2.0)

Data set III: non-small cell lung carcinoma Garnis et al. (2006)

� 13 adenocarcinoma

� 9 squamous cell carcinoma

� 29.781 unique clones (submegabase tiling array)

Methodology

Results

0.983100 (9/9)92.3 (12/13)95.5 (21/22)8Garnis^

0.84068.8 (11/16)93.2 (55/59)88 (66/75)10Snijders*

0.87587.5 (7/8)100 (5/5)92.3 (12/13)11own data^

AUCSpecificitySensitivityAccuracyNb regionsData set

* 10-fold CV performance; ^ LOO performance

36

86

39

81

66

32

24

22

0

5

0

Nb
genes

611

410

49

48

77

56

105

114

93

112

81

Nb LOO 
iterations

Region

BRCA1 gain

BRCA1 loss

Sporadic loss

Conclusions
� Many cancer studies: array CGH data for exploratory 

analysis
� Novel methodological approach: recurrent HMM and 

feature selection within classification setting
� Identification of class-specific aberrations
� Stability of the regions � robust

� Functional annotation analysis � oncogenes or tumor 
suppressor genes (BAF57, HOXA5, LAMA3, CUTL1, 
FGF-10)

� Publications
� Daemen et al. (2008) Classification of sporadic and BRCA1 ovarian cancer based on a 

genome-wide study of copy number variations. KES (Lecture Notes Comp Science), 
Zagreb, Croatia, 165-172. 

� Daemen et al. (2009) A genome-wide computational study of copy number variations: 
an example on ovarian cancer. Chapter 9 of Investigating human cancer with 
computational intelligence techniques (Vellido A, Lisboa P eds), 107-118. 

� Daemen et al. (2009) Supervised classification of array CGH data with HMM-based 
feature selection. PSB, Kohala Coast, Hawaii, 468-479.

� Leunen et al. (2009) Recurrent copy number alterations in BRCA1-mutated ovarian 
tumors alter biological pathways. Hum Mut 30:1693-1702.
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Spectral graph theory

Prior biological knowledge � list of gene pairs

� undirected graph G=(V,E)

– V = {genes}

– E = {gene regulation, protein interactions, etc.}

2 0 0 0 0

0 2 0 0 0

0 0 3 0 0

0 0 0 2 0

0 0 0 0 1

D

 
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 
 =
 
 
  

Adjacency matrix Degree matrix

di = #neighbor nodes

1

2

3

4

5

0 1 1 0 0

1 0 1 0 0

1 1 0 1 0

0 0 1 0 1

0 0 0 1 0

A

 
 
 
 =
 
 
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1 2 3 4 5

Spectral graph theory

2 1 1 0 0

1 2 1 0 0

1 1 3 1 0

0 0 1 2 1

0 0 0 1 1

L D A

− − 
 
− − 
 = − = − − −
 

− − 
 − 

0.55 0.21 0.08 0.32 0.52

0.21 0.54 0.08 0.32 0.52

0.08 0.08 0.28 0.12 0.32

0.32 0.32 0.12 0.48 0.28

0.52 0.52 0.32 0.28 1.08

L
+

− − 
 

− − 
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 
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Laplacian matrix

L
+
= G = Moore-Penrose pseudoinverse of L (Fouss et al, 2007)

= f (similarity between pairs of genes in the network)

� For each gene, its neighborhood in the human interactome is 

taken into account

Secondary data sources

= knowledge in databases on different aspects 
of biological systems

Metabolic pathways

Protein-protein interactions

Domain-domain interactions

Protein domains and families

Transcription factors
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Secondary data sources

= knowledge in databases on different aspects 
of biological systems

Metabolic pathways
� edge = genes/proteins belonging to same pathway

Protein-protein interactions

Domain-domain interactions

Protein domains and families

Transcription factors

EHMN

Secondary data sources

= knowledge in databases on different aspects 
of biological systems

Metabolic pathways

Protein-protein interactions
� edge = interacting proteins

Domain-domain interactions

Protein domains and families

Transcription factors

OPHID

Secondary data sources

= knowledge in databases on different aspects 
of biological systems

Metabolic pathways

Protein-protein interactions

Domain-domain interactions
� edge = proteins interacting via a domain-domain interaction

Protein domains and families

Transcription factors

UniDomInt

Secondary data sources

= knowledge in databases on different aspects 
of biological systems

Metabolic pathways

Protein-protein interactions

Domain-domain interactions

Protein domains and families
� edge = proteins with domains or families in common

Transcription factors
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Secondary data sources

= knowledge in databases on different aspects 
of biological systems

Metabolic pathways

Protein-protein interactions

Domain-domain interactions

Protein domains and families

Transcription factors
� edge = genes targeted by the same miRNA

microRNA.org

Microarray data sets

158 (132/26)loco-regional recurrencebreastPittman 2

236 (181/55)death from breast cancerbreastMiller

80 (53/27)relapsebreastHuang 2

52 (34/18)disease recurrencebreastHuang 1

129 (102/27)distant recurrencebreastChin

133 (88/45)survivalovarianBildV

276 (183/93)metastasis within 5 yrsbreastWang

179 (139/40)distant metastasisbreastSotiriou 2

187 (139/40)relapsebreastSotiriou 1

102 (50/52)tumor statusprostateSingh

220 (118/102)survivalDLBCLRosenwald

158 (108/50)distant metastasisbreastPittman 3

158 (95/63)relapsebreastPittman 1

249 (160/89)local, regional or distant recurrencebreastIvshina

133 (99/34)pathologic responsebreastHess

53 (29/24)survivalovarianBerchuckT

#samples (-/+)OutcomeCancer typeData set

DLBCL = diffuse large-B-cell lymphoma

Affymetrix chips except for Rosenwald (lymphochip)

Methodology

Ti j

ijK x x=

T
K XX=

, 1

p
i j

ij k kl l

k l

K x g x
=

= ∑

T
K XGX=

� Each G-matrix exhaustively relates the gene expression 
profiles of multiple samples, weighted by its entries gkl to obtain 

a more accurate patient similarity matrix
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baseline model

best individual secondary data source (-logpº: 0.7 – 24.82)

best fixed combination rule (-logpº: 0.1 – 16.7)

best trained combination rule (-logpº: 0.03 – 19.89)

best advanced model (-logpº: 0 – 14.47)

Training results
mean AUC of 

º Comparison of 200 AUC 
values between baseline model 
and all other models (one-
sided paired-sampled t-test)

Overall (Wilcoxon)

individual: 0.002

fixed: 0.0039

trained: 0.0098

advanced: 0.557

baseline model

best individual secondary data source (-logpº: 1.03 – 16.35)

mean rule (-logpº: 0.71 – 8.34)

AUC weighting (-logpº: 0.73 – 8.21)

naïve Bayes (-logpº: 0.02 – 5.47)

Validation results
mean AUC of 

º Comparison of 200 AUC 
values between baseline model 
and all other models (one-
sided paired-sampled t-test)

Overall (Wilcoxon)

individual: 0.0004

mean: 0.0005

AUC weighting: 0.001

* *

*
*
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Conclusions
� Improved decision making based on microarray data 

by incorporating the human interactome
� Interactome data encoded in a graph-based way
� Any type of gene-related info can be considered

� KEGG, OPHID and microRNA.org outperform other 
sources with regard to LS-SVM

� Mean rule for the prediction of the 3 corresponding 
models suffices

� Applicable to any kernel method, kernelizable method 
and in a general regression framework

� 2-layer approach essential

� Publications
� Daemen et al. Improved microarray-based decision support with graph 

encoded gene-related data sources. PLoS ONE 5(4): e10225 (2010) (1 
citation).
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